If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20z^2-44z-48=0
a = 20; b = -44; c = -48;
Δ = b2-4ac
Δ = -442-4·20·(-48)
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-76}{2*20}=\frac{-32}{40} =-4/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+76}{2*20}=\frac{120}{40} =3 $
| Y=3^-2x | | 9127309x72340=234 | | 1-5x=-5-7x | | 8(x+2)-10=2(x+4)-20 | | 7(x-1)/4-3/4=-x+5/4 | | 8(x+20-10=2(x+4)-20 | | 331+6x=7 | | (x+0.06x)=40 | | 12x^2+124=0 | | n-3=12-4n | | 12w-15w+-2=-20 | | 3x-30=45x2x | | 3x+48=4x | | (x+0.06x)=35 | | 0=1/2x-4x | | 3x=4x+48 | | -8=3x2+.8 | | 9g+-8g=19 | | 60x=219 | | -p+2p-(-18)=1 | | 1510=75t+4.905t^2 | | v=3v-4 | | -6+12-16=x | | 4x−3=2x+5 | | 129+3(x+9)=180 | | 8-m-3m=16m= | | t/5+36=31 | | -3x-6=-5x+4 | | -11/5x=-132/3 | | d/9+-29=-34 | | 5-4(y-1)=26(y-1) | | 3+6m=87 |